放疗患者中的 SLActive® 种植体

超乎想象的可预期性。

种植治疗中最具挑战性的患者群体包括接受过肿瘤手术、化疗和放疗的患者。此类患者的骨质量严重受损。 

放疗患者中 SLActive® 种植体的性能

1 年随访3


1 名患者因肿瘤复发而从研究中排除。因此,该图是基于 19 名患者共 97 颗种植体。

5 年随访13,14


排除另外 4 名死于癌症的患者,该图是基于 15 名患者共 79 颗种植体。

随机临床试验:3
102 颗种植体,20 名患者
口腔癌的术后、放疗和化疗

临床医生观点

世界牙科论坛新闻动态

观看 Nelson 教授的采访视频,了解更多关于放疗患者修复治疗方面的研究和挑战。了解 SLActive® 种植体如何改善此类患者的生活质量。

可靠性能

即使在糖尿病患者身上

糖尿病患者伤口愈合能力降低15,16,这使种植手术面临风险。了解更多信息>

在全球 60 岁及以上的成年人中,六分之一患有 糖尿病。17 了解更多信息>

鉴于 2 型糖尿病的患病率不断上升,临床医生应如何帮助这类人群(尤其是老年患者)应对这一风险呢?

  • 越来越多的临床证据表明,SLActive® 在糖尿病患者身上表现出高度可预期性。 
  • 一项新的临床研究19在患有和未患糖尿病的患者身上对 SLActive® 的性能进行了比较,结果表明 SLActive® 种植体具有可靠的性能表现。
  • 2 年后糖尿病群体中的种植成功率为 100%
  • 骨组织变化情况与健康个体相似
  • 尽管观察到骨质水平较低,但研究中的所有种植体均表现出良好的初始稳定性。

糖尿病患者群体中的性能表现19

前瞻性病例对照临床研究(15 名糖尿病个体和 14 名非糖尿病个体)


2 年后糖尿病群体中的种植成功率为 100%

骨组织变化情况与健康个体相似

尽管观察到骨质水平较低,但研究中的所有种植体均表现出良好的初始稳定性。

关键研究人员

临床医生观点

吸烟者植入种植体常常表现出高失败率、术后感染风险和种植体边缘骨吸收。29

SLActive® -- 吸烟者中的高可预期性

  • 最近的一项临床研究比较了 SLActive® 在吸烟和非吸烟患者群体中的性能表现,发现 SLActive® 具有良好结果:
  • 96 名患者,130 颗 SLActive® 种植体,5 年随访,种植体成活率 100%

吸烟患者群体中的性能表现30

前瞻性病例对照临床研究(47 名吸烟者和 49 名非吸烟者)


有任何问题吗?联系我们。

数据使用协议*

阅读隐私政策

请重新输入上面的验证码

参考文献

* 依据 Buser D. 等人定义的成功标准。Long-term stability of osseointegrated implants in augmented bone: A 5-year prospective study in partially edentulous patients.Int J Periodont Restor Dent.2002; 22: 108–17.
** 经校正,排除死于癌症的患者。

1 Straumann SLActive implants compared to Straumann SLA implants.Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD.Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans.Clin Oral Implants Res.2011 Apr;22(4):349-56. doi: 10.1111/j.1600-0501.2011.02172.x; Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces.Journal of Biomedical Materials Research A, 76(2):323-334, 2006.; De Wild M. Superhydrophilic SLActive® implants.Straumann document 151.52, 2005 ; Katharina Maniura.Laboratory for Materials – Biology Interactions Empa, St. Gallen, Switzerland Protein and blood adsorption on Ti and TiZr implants as a model for osseointegration.EAO 22nd Annual Scientific Meeting, October 17 – 19 2013, Dublin ; Schwarz, F., et al., Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive®) and conventional SLA® titanium implants: an immunohistochemical study in dogs.J Clin.Periodontol.35.1 (2008): 64–75.; Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces.Dental Materials 2008 Jan;24(1):102-10.Epub 2007 Apr 27.; Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: Preliminary results of a pilot study in dogs.Clinical Oral Implants Research, 11(4): 481-488, 2007.Raghavendra S, Wood MC, Taylor TD.Int. J. Oral Maxillofac.Implants.2005 May–Jun;20(3):425–31.9 Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J, Toutenburg H, Cochran DL.Enhanced implant stability with a chemically modified SLA® surface: a randomized pilot study.Int. J. Oral Maxillofac.Implants.2007;22(5):755–760.
2 Nicolau P, Guerra F, Reis R, Krafft T, Benz K, Jackowski J. 10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface.Quintessence Int. 2018 Dec 18:2-12.
3 Patients treated with dental implants after surgery and radio-chemotherapy of oral cancer.Heberer S, Kilic S, Hossamo J, Raguse J-D, Nelson K. Rehabilitation of irradiated patients with modified and conventional sandblasted, acid-etched implants: preliminary results of a split-mouth study.Clin.Oral Impl.Res.22, 2011; 546–551.
4 Yerit, K., Posch, M., Seemann, M., Hainich, S., Dortbudak, O., Turhani, D., Ozyuvaci, H., Watzinger, R. and Ewers, R. (2006) Implant Survival in Mandibles of Irradiated Oral Cancer Patients.Clinical Oral Implants Research, 17, 337-344. http://dx.doi.org/10.1111/j.1600-0501.2005.01160.x.
5 Verdonck, H.W.D., Meijer, G.J., Laurin, T., Nieman, F.H.M., Stoll, C., Riediger, D., Stoelinga, P.J.W. and de Baat, C. (2007) Assessment of Vascularity in Irradiated and Non-Irradiated Maxillary and Mandibular Alveolar Minipig Bone Using Laser Doppler Flowmetry.International Journal of Oral Maxillofacial Implants, 22, 774-778.
6 Hu, W.W., Ward, B.B., Wang, Z. and Krebsbach, P.H.(2010) Bone Regeneration in Defects Compromised by Radiotherapy.Journal of Dental Research, 89, 77-81. http://dx.doi.org/10.1177/0022034509352151.
7 Wang, R., Pillai, K. and Jones, P.K.(1998) Dosimetric Measurements of Scatter Radiation from Dental Implants in Stimulated Head and Neck Radiotherapy.International Journal of Oral Maxillofacial Implants, 13, 197-203.
8 Grotz, K.A., Al-Nawas, B., Piepkorn, B., Reichert, T.E., Duschner, H. and Wagner, W.(1999) Micromorphological Findings in Jaw Bone after Radiotherapy.Mund-, Kiefer- und Gesichtschirurgie, 3, 140-145.
9 Chambrone L, Mandia J, Shibli JA, Romito GA, Abrahao M. Dental Implants Installed in Irradiated Jaws: A Systematic Review.Journal of Dental Research.2013;92(12 Suppl):119S-130S. doi:10.1177/0022034513504947.
10 Shugaa-Addin B, Al-Shamiri H-M, Al-Maweri S, Tarakji B. The effect of radiotherapy on survival of dental implants in head and neck cancer patients.Journal of Clinical and Experimental Dentistry.2016;8(2):e194-e200. doi:10.4317/jced.52346.
11 Nooh N. Dental implant survival in irradiated oral cancer patients: a systematic review of the literature.Int J Oral Maxillofac Implants.2013 Sep-Oct;28(5):1233-42. doi: 10.11607/jomi.3045.
12 Dholam KP, Gurav SV.Dental implants in irradiated jaws: A literature review.J Can Res Ther [serial online] 2012 [cited 2016 Aug 17];8:85-93.Available from: http://www.cancerjournal.net/text.asp?2012/8/6/85/92220.
13 Nelson, K., Stricker, A., Raguse, J.-D. and Nahles, S. (2016), Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: a clinical clarification.J Oral Rehabil, 43: 871–872. doi:10.1111/joor.12434
14 C. NACK, J.-D. RAGUSE, A. STRICKER , K. NELSON & S. NAHLES.Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: five-year follow-up.Journal of Oral Rehabilitation 2015 42; 57—64.
15 Devlin H, Garland H, Sloan P. Healing of tooth extraction sockets in experimental diabetes mellitus.J. of Oral Maxillofac.Surg.1996; 54:1087-1091
16 Wang F1, Song YL, Li DH, Li CX, Wang Y, Zhang N, Wang BG.Type 2 diabetes mellitus impairs bone healing of dental implants in GK rats.Diabetes Res Clin Pract.2010; 88:e7-9.
17 IDF Diabetes Atlas, 7th Edition, 2015 http://www.diabetesatlas.org/.
18 US Centers for Disease Control and Prevention.Diabetes 2014 report card.Available from: www.cdc.gov/diabetes/library/reports/congress.html.Accessed September 2015.
19 Cabrera-Domínguez J, Castellanos-Cosano L, Torres-Lagares D, Machuca-Portillo G. A Prospective Case-Control Clinical Study of Titanium-Zirconium Alloy Implants with a Hydrophilic Surface in Patients with Type 2 Diabetes Mellitus.Int J Oral Maxillofac Implants.2017 Sep/Oct;32(5):1135-1144. doi: 10.11607/jomi.5577; Cabrera-Domínguez J. A prospective, two-year clinical trial of titanium-zirconium alloy implants (Roxolid® Straumann®) with hydrophilic surface (SLActive®) in patients with Type 2 Diabetes Mellitus. presented during 26th Annual Scientific Meeting of the European Association of Osseointegration – 5-7 Oct 2017, Madrid, Spain.
20 Hotchkiss KM, Ayad NB, Hyzy SL, Boyan BD, Olivares-Navarrete R. Dental implant surface chemistry and energy alter macrophage activation in vitro.Clin.Oral Impl.Res.00, 2016, 1–10. doi: 10.1111/clr.12814.
21 Lee R, Hamlet SM, Ivanovski S. The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: A pilot study.Clin Oral Impl Res (accepted 4/8/2016).
22 El Chaar E, Zhang L, Zhou Y, et al.Osseointegration of Superhydrophilic Implants Placed in Defect Grafted Bones. International Journal of Oral & Maxillofacial Implants .Mar/Apr2019, Vol. 34 Issue 2, p443-450
23 Müller E, Rottmar M, Guimond S, Tobler U, Stephan M, Berner S, Maniura K The interplay of surface chemistry and (nano-)topography defines the osseointegrative potential of Roxolid® dental implant surfaces. eCM Meeting Abstracts 2017, Collection 3; SSB+RM (page 31).
24 EMPA (2017) Report additional experiments: Impact of RXD SLA, RXD SLAnano, RXD SLActive, and RXD pmod SLA surfaces on protein adsorption, blood coagulation, and osteogenic differentiation of HBCs.Final report: Impact of RXD SLA, RXD SLAnano, RXD SLActive, and RXD pmod SLA surfaces on protein adsorption, blood coagulation, and osteogenic differentiation of HBCs.EMPA, Swiss Federal Laboratories for Materials Science and Technology (data on file).
25Stavropoulos A et al.Greater Osseointegration Potential with Nanostructured Surfaces on TiZr: Accelerated vs. Real-Time Ageing.Materials (Basel).2021 Mar 29;14(7):1678.
26 Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions.Int J Oral maxillofac Implants 2009: 24:63-74
27 Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. 2015.The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies.J Biomed Mater Res Part A2015:103A:2661–2672.
28 Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S. Nanostructures and hydrophilicity influence osseointegration – A biomechanical study in the rabbit tibia.Clin.Oral Impl.Res.25, 2014, 1041–1050doi: 10.1111/clr.12213
29 Chrcanovic BR, Albrektsson T, Wennerberg A Smoking and dental implants: A systematic review and meta-analysis.J Dent.2015 May;43(5):487-98
30 Alsahhap A et al.Survival of Titanium-Zirconium and Titanium Dental Implants in Cigarette-smokers and Never-smokers: A 5-Year Follow-up.Chin J Dent Res.2019;22(4):265-272
31 Hotchkiss KM et al.Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants.Dent Mater.2019 Jan;35(1):176-184.
32 Hsu JT, Shen YW, Kuo CW, Wang RT, Fuh LJ, Huang HL.Impacts of 3D bone-to- implant contact and implant diameter on primary stability of dental implant.J Formos Med Assoc.2017 Aug;116(8):582-590.; Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants.A histomorphometric study in miniature pigs.J Biomed Mater Res.1991 Jul;25(7):889-902 ; Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of Dental Implant Surface Modifications on Osseointegration.Biomed Res Int. 2016;2016:6285620.; Goyal N., Priyanka R. K. Effect of various implant surface treatments on osseointegration – a literature review.Indian Journal of Dental Sciences.2012;4:154–157